If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+10w-300=0
a = 1; b = 10; c = -300;
Δ = b2-4ac
Δ = 102-4·1·(-300)
Δ = 1300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1300}=\sqrt{100*13}=\sqrt{100}*\sqrt{13}=10\sqrt{13}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{13}}{2*1}=\frac{-10-10\sqrt{13}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{13}}{2*1}=\frac{-10+10\sqrt{13}}{2} $
| 22x−5(2x)+4=0 | | 4(3x+5)-6(3x-5)=12x+3(4x-7) | | 5x+13=12+6x | | -0.10(25)+0.45x=0.05(x-18) | | 3h+5=35 | | x-0.25x=3000 | | 30/2(x+1)=5 | | -0.10(70)+0.65x=0.05(x-20) | | x+9+164+4x+x-5=360 | | 2/19=b-1/19 | | -8m+12+9m=-2 | | -2(6t-4)=-20 | | 6t+8=5t+18 | | 4x×2=25 | | 6y+8=12+10y | | 2x+10=-4x-22 | | 0=16t^2+16 | | 0.3(x-1)=0.6 | | 4x-5(x+3)=20 | | 2(x-1)-(x+2)=5 | | 2y-5=(4y-3)/2 | | 512=m^3/2 | | 2y-5=(4y-3)÷2 | | 3n=-n/2 | | x/4+6=x/8=8 | | -3r+12=24r+4 | | 4x-7(x+16)=68 | | 2x+20=35-x | | 8y+9=-3+30 | | 5v+4(1-6v)=156 | | 7+42*3^(2-3a)=14*3^(2-3a)+7 | | 256-21t-16t^2=0 |